
AD-AIOS 526 INCO INC MCLEAN VA F/6 9/2
ORACLE VERSUS IOM COMPARATIVE ANALYSIS.(U)
NOV 81 N0001-81-C-0808

UNLASSIFIEOuhhhIIhffuIIum
IIIIIIIIIIIIII....f
IIIIIIIIIIIIIIlfl.flf
IEEIIIIEIIEEEE

IIIIIIIIIII

A11 1.012.
li~t-ili*2

IIII III1 3 nn

11111 1.25 1-1 .4 f 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

LEVEL'

00

I-

DTICSELECTE DS DEC 14 181

o -
~D

. i' DTfoN STATEM A
IApp--d ,npubli a",, 81 LI 26 024

_______________________________Disbibuflon
Unlimd

ALEVEL" S--01~kI IOA/JP-I-81-83155-uW iIC IAn 0

If C- .-t Ic. ,
Awalllt C~os

Dist fel"

cow= vs. nx
Qzmarative Analysis

10 Novwrer 1981

Contract No. N00014-81-C-0808

Prepared for:

Office of Naval Research
Code 240

Attn: Joel Triuble
800 N. Q ncy Street

Arlington, Virginia 22217

~DTIC

Prepared by: ELECilELECTEiI

I= CD DEC14188260 Gremnsboro Drive
lem, Virginia 22102

D

IDmTRIB'ON STATEMENT A
Appwlod for publi c"l -' ',Dltribution Unlimited"""

TANZ CFCNTM

WflGZ 1. KNCA.; 1-1
1.1 Purpose of Comparative Analysis 1-1
1.2 Project Pleferences 1-2
1.3 Glossary 1-5

SEM7CN 2. CPA=J SOL F -IPIC 2-1
2.*1 Query Statements 2-1
2.2 Data Definition Statements 2-6
2.3 Data MaiuainStatemnts 2-7
2.4 Security an~d Cconcurrency Ccrntro1 Statements 2-7

sriaN 3. L!NIQJ Sa4/rDS FEA1UES 3-1

SinCNci 4. IM DESCRflCN 4-1
4.1 Query Statemnrts 4-1
4.*2 Data Definition Statements 4-3
4.*3 Data Manipuilation Statements 4-6
4.4 Security and Concurrency Control Statements 4-6

SEI'IC4 5. 11S COMWND RATICSHI TO IML 5-1
5.1 Query/Parse Tree 5-1
5.2 Query Stateaits 5-3
5.3 Data Definition Stataiwits 5-7
5.4 Data MaiuainStatsiwits 5-13
5.5 Security and Concurrency Conitrol Statemnits 5-15

SI'ION 6. COMRLIQN BEI'MEE SQL AND IDM FEI JTS 6-1
6.*1 Query Facilities 6-1
6.2 Data MaiuainFacilities 6-3
6.3 Data Definition Facilities 6-3
6.4 Security and Concurrency Qmntrol Facilities 6-4

rI 7. AM~ITICNAL IOM FEAM2U 7-1

SI=C 8. WD4MPEMEIM FET1FJS CF FUlL SNE!L8-

LinT OF MUMhS

I

Figure No. Title Pae No.

5.1 IEM Parse Tree 5-2
5.2 IM Parse Tree 5-2
5.3 IDM Target List 5-3
5.4 Query Tree With Qualification 5-4
5.5 Inr l~trieve Cmuelnd Tree 5-6
5.6 Ut Jetrieve Cmad Tree 5-6
5.7 Create View Query Tree 5-11

I" i

I
SPION 1. 1.r

1.1 Purpose of Cooperative Analysis. A coaqarison of the syntactic and

semantic structures of the S9QUEL implemented in ORACLE (Version 2.3) and

IL (the Intelligent Database Language), the query language designed for

the LEM 500, was coducted as the basis for building a rcnt-M-d to the

IDM 500 Database Mchine. Implemntation of the transportable SEQUEL

front-end with the IDM 500, which will support the ORACLE subset of

SEJEL, will provide the Navy IAIPS Program with a low-cost alternative

for achieving a high performance relational database intelligence support

envircrment.

The analysis focused on the features of each language, and on the

features available with the IDM. This process was used to highlight the

additional procedures necessary to create the language translation

procedures that will be implemented by the SECJEL/IEM Translation (SIT)

canponent of the Front-End. Information on ORACLE SEQUEL 2.3 was

derived from document review. Information about the IDM and

B itton-Lee s query language, IL, canes both from the literature and

ve hands-on use.

This document contains: a description of ORACLE SOL. Familiarity

with the ORACLE manual is subsumed; SIL/DS features are described; a

description of IDL and its relationship to the IDM ccmmands,- the

correlation between SML and the LDM features; additional IDM features not

available within SOL and unimplemented features of full SEL.

1-1

1.2 Project References.

1. Automated Data System Documentation Standards. Department of

Defense Instruction 7935.1-S, Sept.1977.

2. Britton-Lee, Inc. "DBMS In a Box." Los Gatos, California.

3. Britton-Lee, Inc. "IEM. The Intelligent Database Machine."

4. Britton-Lee, Inc. IUM 500 Intelligent Database Machine Product

Description. Los Gatos, California, 1981.

5. Britton-Lee, Inc. Preliminary Performance Report - IM 500.

6. Chamberlin, P.D. et al "S 00EL 2: A Unified Approach to Data

Definition, Manipulation, and Control." IBM Journal of Research and

Develcpniit Vol. 20 (Nov, 1976), pp.134-149.

7. Dieckmann, E. Martin. "Three Relational DBMS." Datanation,

(September, 1981), pp. 137-148.

8. "Eight Fortune 500 Companies Offer Test Sites for New

Britton-Lee Intelligent Database Machine." 3 pgs. Britton-Lee News

Release - September 1980.

9. "English Mrchant Banks Provide One Million Dollar Second Phase

Financing for Britton-Lee." 2 pgs. Britton-Lee News Release - eptember

1980.

10. Epstein, Robert and Hawthorn, Paula. "Aid in the 80s."

Datamation Magazine, 1980, pp. 154-158.

11. Epstein, Robert and Hawthorn, Paula. "Design Decisions for the

Intelligent Database Mchine." AFIPS-Conference Proceedings, Volume 49,

1980, pp. 237-241.

1-2

I~

12. IBM. SQL/Data System General Information - Program Product.

Program Ma bers 5748-X5. Gl+24-5012-0/File No. S370-50.

13. IBM. "SOL/Data System Concepts and Facilities - Program

Product." Program Number 5748-X05. Gl+24-5013-0/File No. S370-50.

14. IDM 500 Software Reference Manual. Britton-Lee, Inc.,

Septetber 1981.

15. Inco. "Data Ease Technology - A Concept and Recoumendation."

June 1981.

16. Krass, Peter and Wiener, Hesh. "The DBMS Market is Booming."

Datamation. (Septenber, 1981), pp. 153-170.

17. ORACLE User's Guide. Version 2.3. Relational Software

Incorporated. April, 1981.

18. Outline for SQL Front-End Functional Description. INCO:

October, 1981.

19. "Processor Does Data Base Tasks," Electronics. April 24, 1980.

20. Project Work Plan/Comparative Analysis Outine. INCO:

Septetber, 1981.

21. "Technical Proposal for Developnent of a SEOEL Front-End

(Language Feature Specification)." Prepared for: Office of Naval

Research; hXEO: July, 1981.

22. Technical Memos

HE,# : 1184/01
Date : 14 July 1981
Originator: M. Kerchner
Bubject : SBUUML/I5L Translation

Meao t , 1184/02
Date t 14 July 1981
Originator: M. Yarchner

1-3

Subject : S9L-IM Cczuad Translation

HE, # : 1184/03
Date : 22 July 1981
Originator: M. Yerchner
Subject : SCL/IEM Ilementation Requirements Definition

Mmo # : 1184A/04
Date : 22 July 1981
Originator: Fred Friedman
Subject : BNF Syntax for CtS-l000 SOL Queries

Meo # : 1184/09
Date : 14 August 1981
Originator: M. Kerchner
Subject : High Level Design Review of BNF Syntax for CDS-1000

SOL Queries

mo # : 1184A/10
Date : 13 August 1981
Originator: Fred Friedman
Subject : CES-1000 S(L Architecture

1-4

1.3 Glossary

ALL Bmr indicates that all privileges except those listed in the
GRANT command are to be granted, or that all privileges
except those listed in the RIVKE ocmmand are to be
withdram.

ALL RIGHTS indicates that all privileges are to be granted, or
that all privileges are to be revoked.

AND indicates the boolean operator AND. Boolian
operators are used to connect predicates to form
cczupud logical expressions.

ASC indicates ascending sort order. If no sort direction is
specified for a field, ascending is assumed.

AW3 specifies the arithmetic average of the values contained
in the set of qualifying fields.

BEGIN TRANSACTION identifies the start of a logical transaction consisting
of one or more SCL statements. The BEGIN TPANSACTION
must specify those tables (if any) being locked for UPDATE
purposes, and those tables (if any) being locked for RAD
purposes.

BLTWEEN indicates the range comparison operator. The range is
specified as a pair of constants, expressions, or columns
connected by an AND.

CHR indicates the column is to contain alpha-numeric character
string values.

column specifies the name of a column defined in a table or view.

(column,...) specifies the names of the columns of the table in the
order the values will appear.

<column,...> specifies a set of numeric or character-string literal
values. The set is enclosed in angle-brackets < > and
items within the set are separated by ommas.

CCRT BY specifies the selection of rows according to their
tree-structure relationship. The clause requires
specification of the major and minor columns.

cistant specifies any numeric or character-string constant literal
value that is to be inserted into the database in the

1-5

I

specified column. Single quotation nmrks are required
around all character-string constants to distinguish them
from column names.

CwnT specifies the count of the set of all fields or rows
qualified by the WER clause. OUNT indicates null
fields in its total.

CWATE TABLE defines a new table that is to be physically stored in
the database. A table may contain frmn 1 to 255 columns.
The CWATE TABLE specifies the name of the table, the nanes
of the columns, and the column data types.

EEINE USER adds an authorized user to a secure ORACLE database. Only
defined users are permitted to log on to a secure database.

MINE VDE creates an alternative view of data stored in tables in the
database. The MINE VIEW statement names the view and
optionally names its columns. A view may be defined in
terms of other views. Views my be queried in the same
way as stored tables; however, IELETE, UPDATE, and I4SERT
clauses may "not" reference views.

EELETE

LET'E clause specifies the name of the table containing a raw or set of
row that are to be removed from the database. The specific
rows that are to be deleted are qualified by a WHERE clause.

ESC indicates descending sort order.

EP statement removes tables or views from the system. nce a system
entity has been dropped, its name may be reused. A table
cannot be dropped if the table contains data. A table or
view cannot be dropped if another view is defined upon it.

END TRANSACrICN is used to terminate a transaction that was started with a
BBGIN TRANSACTION statement.

EXPAND TABLE adds a new column to an existing table stored in the
database. The new column is added to the right side of the
table. Existing rows are considered to have null valuesj in the new colum until they are updated.

expression specifies an arithmetic expression made up of columns and
constants that are connected by the operators +, -, *,
/. Parenthesis () are used to establish precedence. Note
that express ons involving a oolumn value of NEL, will
result in a null valu unless the NLL Function parameter
is used.

1-6

<expression ,... specifies a set of costant values or expressions.

FRIM clause lists the tables and views that are referred to by the
other clauses in the query block. A query block must
contain a SELECT and FRtM clause, and may optionally contain
a W IE, GROUP BY, or HAVIN clause.

function indicates any of the SCL built-in group functions CaT,
SiM, A3, MAX, MIN. The presence of a built-in function
within a SELECT clause implies a GRXJP BY. If the GROUP
BY is not explicitly stated, the entire query result is
treated as one group and each field in the SELECT clause
must be a unique property of the group.

generic-constant specifies the leading character-string of a literal value.
The leading string must be followed by the ellipsis
notation "..." and the result must be enclosed in single
quotation marks. Specification of a generic onstant
allows for a search on a leading character-string of a
value.

GRANT allows the user who creates a table or view to give access
privileges to other users. Those privileges are: READ,
INSERT, ELEITE, UPDATE, and EXPAND.

HAVING clause qualifies groups that are to be returned as the result of a
query. Each field listed in the HAVING clause must be a
unique property of the group.

GKKJ BY is used to partition tables or views into groups according
to the values in a column or a list of columns. A built-in
set function is then applied to each group. A GFOJP BY
clause is always used with a built-in function.

IMAGE indicates that an index is to be maintained for the values
in the column. Join operations can be performed only
if both columns referenced in the joining predicate are
defined as IMAGE.

IN indicates the set inclusion operator. IN tests a field for
inclusion in a set of values. The comparison operator =
may be used in place of IN.

ILUJDING is used with queries on tree-structured tables in
conjunction with the WERE clause to determine which rows
are to be returned as a result of the query.

INCLUDING clause specifically comtains any predicates or logical expressions
that may be contained within the WEI clause. I MWDIM

1-7

is an optional clause used in conjunction with the Q2NECT
BY clause.

INSERT specifies the adding of a new raw or set of rows into a
table. Fields that are not present in the insertion
statement are given null values.

len specifies the maximum length of a value to be stored in a
character string field. The length must be a number from
1 to 255.

major-column specifies the name of the assembly column.

MAX specifies the maximum numeric value contained in the set
of qualifying fields.

MIN specifies the minimum numeric value contained in the set
of qualifying fields.

minor-column specifies the name of the omponent column.

NOiUILL indicates that null values are not permitted in the column.

NOT specifies that the following predicate or boolean expression
is to be negated.

NULL indicates the absence of a value in the database. Null
values are ignored in the evaluation of all arithmetic
expressions, and the computation of all built-in functions
except COUNT. NUIL values are treated as unknowns in the
evaluation of logical expressions (see Three Values Logic).

Null Value Function assigns a tmporary value to null value encountered within
an expression. The Null Value Function may be used in a
SELBCT, SET, or WiERE clause anywhere a column name may be
used including within arithmetic expressions and built-in-
functions.

NUMBER indicates the column is to contain numeric values. Numeric
values are stored internally in base 256 format to maintain
maximum precision.

OR indicates the boolean operator OR.

ORDER BY indicates the sequence that the query result is to be
returned. The ORIER BY clause may contain a major and up
to 254 minor sorting fields, with a maximum concatenated
sort field of 255 characters.

password specifies the name of the password for the user being

1-8

defined. The user nust enter this password when logging
on to an ORPALE database. The password can have a
maximum length of 20 characters.

PRIOR specifies the direction in which rows are to be selected.
If the PRIOR keyword is placed before the minor (omponent)
column, the query proceeds down the tree (explosion). If
the PRIOR is placed before the major (assembly) column, the
query proceeds up the tree (implosion).

privilege specifies the type of operations that are to be authorized
for the table. Privileges that have been granted by means
of the GRANT ocxmand my be withdrawn through the use of
the FVMKE command.

PUBLIC all users of the database

MNspecifies that the table should be locked to update
transactions. Read transactions may concurrently access
the table.

SELECT... specifies the use of the result of a query as a view on
the database. Any vaid query bock can be used as a
database view. The query blocks may be nested to any
number of levels.

SET specifies a column or list of columns to be modified within
the table referenced by the UPDATE clause. A SET clause
is always used in conjunction with an UPDATE clause. New
values for fields that are to be updated may be state as
constants or expressions.

SCL a relational data language that provides a unified set of
facilities for query, data manipulation, data definition,
and data control. SOL is both a terminal interface for
nonspecialists in data processing, and a data sublanguage
enbedded in host programming language for use by application
programmers.

SrAFT WITH specifies the rows that are to be used as starting points
in queries on tree-structured tables. The STAMT with clause
may contain any predicate or logical expressions that may
be contained within a W*ERE clause. The STARa WITH clause
is always used in conjunction with the CONNECT BY clause.

91M specifies the arithmetic sum of the values of qualifying
fields.

table specifies the name of a table or view that orntains columns
referenced by SELECT, WHERE, GROUP BY, HAVING, or ORDER

1-9

BY clauses.

table.* returns all the columns in the table or view specified.
The * an be qualified with a table name %tdn there are
multiple tables and/or views listed in the FROM clause.

value specifies a tenporary numeric value to be assigned to null
values encountered during processing.

VAR indicates that the value stored in a character string field
is to be stored in variable length format. Currently,
OPACE stores all character string values in variable
length format whether or not VAR is specified.

view specifies the name of the view that is being defined. Table
and view names must be unique within the database. The
maximum length of the view name is 30 characters. The first
character must be alphabetic.

WIERE space qualifies the rows that are to be returned as the result of
a query. The WIERE clause may contain any combination of
predicates that compare fields of rows to constant values,
camare two fields of a row with each other, coapare fields
to expressions, etc.

WrI GRAN OPTION specifies that the grantee may grant the privileges listed
to other users.

returns all columns from all of the table(s) and view(s)
specified in the FROM clause of the query block, and can
also specify the count of all rows that satisfy the WIERE
clause. The * may only be used with the QOUtr function in
the f em eucNin*ro

indicates the equal comparison operator.

indicates the not equal comparison operator.

indicates the greater than ca arison operator.

>= indicates the greater than or equal comparison operator.

< indicates the lass than comparison operator

<- indicates the less than or equal comparison operator.

table* specifies that the row of the table listed in the from
clause are to participate in the join if the join-column
contains a null value. This is referred to as a
"Outer-Join". An outer join table cannot be the first

1-10

table listed in the FROM clause.

table.column specifies the name of a column qualified by the name of the
table that contains the column. Qualified column names are
used to eliminate abiguity when the FROM clause lists
multiple tables or views that contain duplicate column
names.

table label specifies that the table or iew is to be renamed within the
context of a query block. The renaming of a table with a
label is necessary when the same table or view is listed
more than once in the same FROM clause. This mechanism is
used to join a table to itself. The temporary label is
used in place of the table name to qualify columns
referenced by the other clauses within the query block.

tran-id specifies an integer value. Tran-id must be specified when
transactions are numbered in the BEGIN TRANSACTION
statement.

UC indicates that the index to be maintained on this column
is to have forward canpression only. If UC is not
specified, the index will have both forward and backward
cxzrpession.

UNIQUE indicates that duplicate rows are to be eliminated fron the
query result in a WHERE clause or that no two fields within
a column can have the same value if AGE has been
specified.

UPTE specifies that the table should be locked for all other
update and read transactions.

UPDATE space specifies the name of the table containing a raw or set of
ros that are to be nmdified. A SET clause is used to
specify the updates which are to be performed on the one or
=re columns within a ra.

USER returns the name of the user (as specified in the DEFINE
USER calmand) who is executing this SOL statement.

user-rme specifies the name or identifier of the user being defined.
The user must enter this name when logging on to an ORACIE
database. The user-name can have a maximum length of 20
characters.

1-11

'A
, , . - . ,. -- S. . ..? -- - . -

S TICN 2. ORACLE SL EESCRIPrION

ORACLE SOL is a relational data language with facilities for query

stataments, data manipulation, data definition, and data control. SBL is

based on SEQUEL which was originally developed by IB4 as the main

external interface for System R. Relational Software Inxrxporated (RSI)

developed ORACLE incorporating SOL with a relational model of data.

ORACLE SQL (hereafter referred to as SQL) was designed to increase

productivity by producing a highly sympathetic user language, data

independence and flexibility.

The format notation that follos conforms to the ORACLE SOL manual

notation, as referenced on page 2-2 of the Oracle User's Guide - Version

2.3:

CAPITALIZED WORDS identify vrds that have specific meanings in
SOL.

lower case words identify words that are names or labels to be
specified by the user.

E) Square Brackets are used to indicate that the enclosed word is
optional and may be amitted.

I Vertical Bars enclosing vertically stacked items indicate
that one of the enclosed items may be chosen.

... Ellipsis indicates that the immediately preceding unit
may occur once or any number of times in
succession.

2.1 Query Statements. The basic SOL retrieval or query statement

consists of one or more Query Blocks, and is of the form:

SELCT a 4 (specifies what is to be returned as a result of
tfequery block)

FM relation r (specifies what tables and/or view are involved
in the query)

2-1

The following optional clauses (detailed in the BMF) may be

oontained in the query: WERE, GROUP BY, HAVIM, (BY, STAR WIT,

and ThRUDING. Values resulting from processin one Query Block can be

referred to in the WHERE clause of another Query Block. This is

accomplished by nesting Query Blocks withi a Query statement.

SELCT a.1

FROM r1

WERE aj IN

SELECT a.

FROM r 2

WHERE ak satisfy [set of boolean conditions)

Query Blocks can be nested at any level, and may be cumbined with other

SQL predicates using boolean AND, OR and NOT. "SELET ..." always

denotes a nested Query Block.

The SELECT instruction specifies the return of columns from the

table(s) and/or view(s) specified in the WHERE clause of the Query Block.

The SELr instruction may be modified by any of the following ommands:

SET [ILN=E] I I I column , . . .
Icolumn I Itableoolumn
I table. column Itable. I
Itable.* I [expression I
I expression I Ifunction I
I function I luser

Explanation of the SELBCT modifiers appears in the BW at the end of this

section and in the User's Mnual. Essentially the SELET clause is used

to request: "all columns; specific columns- results of arithmetic

expressions or build-in functions; or a combination of columns,

2-2

K

expressions ad functions." Note that duplications are not eliminated

unless SEMT UIQUE is specified. UNIQUE is an option not a default,

because extra processing is required to eliminate duplicate expressions.

The FROM clause is used to list the tables and views referred to in

the other claues of the query block. The query block will always

contain a SELBCT and FROM clause, and may contain a WHERE, GROUP BY, and

HAVING clause. Table, table label, and table * are modifiers of the FROM

clause that specify location or names of participating elements.

The WERE clause is used to qualify the rows that are to be returned

as the result of a query. Any grouping of predicates that compares

fields of rows to constant values, or two fields of a raw with each

other, or ccnpares fields to expressions nay be contained in the WHERE

clause. In S(L multiple predicates in the WERE clause can be connected

by AND or OR with square brackets E I to form logical expressions and

establish procedure. Specifying NOT before a predicate negates the

predicate on boolean expressions. Exclusion of a WHERE clause causes all

row in the specified table or view in the FROM clause to be returned.

In OFE five functions were built-in, as standard to the system.

Ilntl I* I

Iavg I Itable.columnIImx I
Imin I

These functions may be used in both the SEECT and HAVING clauses.

If these functions are used within the SELMT clause, there need be no

GOP BY clause in the query block. The entire table is treated as one

group. Here, only unique attributes of the group may be selected. The

2-3

function, aX0 r, may be applied to columns defined as CHAR in the CREATE

TABLE. With the exception of the COUNr function, null values will not be

included in a built-in function unless the NULL function parameter is

used.

The Null Value Function assigns a temporary value to null values

found within an expression. It can be used in a SELECT, SET or WHERE

clause anywhere a column name may be used including within arithmetic

expressions and built-in functions.

The GROUP BY clause partitions tables or views into groups

according to the values in a column or a list of columns. Then, a

built-in function is always applied to each group. "When a GR0P BY

clause is used, or implied by the presence of a built-in function in the

SE r clause, each field in the SELWT clause must be a unique property

of the group."

The HAVING clause delineates groups that are to be returned as the

result of a query. Each field listed in this clause must be a unique

property of the group. The HAVING clause will accept any cumbination of

predicates in order to specify the appropriate groups. Mien there are

both WFMM and HAVING clauses, the Wf clause is to be applied first to

qualify za. The groups are then formed, and then the HAVING clause is

applied, to qualify the groups. The following expressions, detailed in

the User's Guide, modify the HAVING clause.

Icolumn I I- I Iolumn I IAI
Itable.oolzumnlI),- I Itable.column I IOR I
lconstant I 1> I 1constant
i NUL I I >- I Igeneric-constantI
lexpression I I< I INtL I
I 4column,...) I I lexpression I

2-4

IUSER I Ibetw1een k-column,... I
IIN I <expression,... > I

IsEmr I
IUSER

CCNNECT BY, in ORACLE is used to specify the selection of rows

according to their tree-structure relationship. This clause requires

specification of major and minor columns. The PRIOR keyword is

positioned before the column to indicate the direction the rows are going

on the tree.

The START WITH clause is used to specify the rows designated as

starting points in queries on tree-structured tables. This clause may

contain any predicate or logical expression that can be contained in a

MMERE clause. START WITH is always used in conjunction with the CONECT

BY clause.

The ILDING clause is also used with queries on tree-structured

tables in conjunction with the MME clause to determine the ros to be

returned as the result of the query. Rms excluded because they fail to

satisfy the E clause cause exclusion of an entire branch of a tree

structure. Rows excluded because they fail to satisfy an I1UDIM

clause result only in that row being excluded. INCLUDfNG is an optional

clause. It may czmbine any predicates or logical expressions that can be

used in a WHERE clause. INCWLUDING is used in conjunction with the

OT BY clause.

RBY is an instruction that indicates the sequence in wtvich the

query result is to be returned. The ORER BY clause is not a part of the

query block, and may only be used next to the first query block of a SOL

query statement.

2-5

II IIIin., . ' .a .

!

2.2 Data Definition Statements. Data definition statements allow

modification of data definitions in the ORACLE Data Dictionary. Use of

these statements does not require reorganization activity. There are

four basic statements in this category. They are: CREATE TABLE: WAND

TABLE: I1INE VIEW; and DROP.

The statement CREATE TABLE is used to define a new table to be

inserted in the database. This statement specifies the name of the

table, the names of the columns, and the column data types. In the

CREATE TABLE statecwwit null or duplicate values may be restricted and

high performance accsa paths my be specified. A table can contain up

t3 255 columns. An index (IMAGE) is automatically maintained in the

first column deined in the table. Sequential processing of rows in the

table is aided by storage in physical sequence based on the index.

EXPAND TABLE adds a new column to a table that already exists in the

database. New columns are added on the right side of the table. A query

or a view written in terms of the base table (without addition) is not

affected by the expansion. Existing rows are treated as null values in

the new column until they are updated.

Alternative view of data stored in tables in the database can be

created by use of the DEFINE VIEW statement. Any query formation can be

used to define the view, or the view may be defined in terms of other

views. The DWINE VIEW statement will name the view and my (optionally)

rnme its columns.

The DROP statement is used to eliminate tables or views from the

system. A table cannot be dropped if it contains data. Neither a table

2-6

nor a view can be dropped if another view is defined upon it. All

applicable row must be deleted before the DROP statemnt is used.

2.3 Data Manipulation Statements. Data manipulation statements provide

for addition, deletion, or modification of column values or rm of a

table. There are four S5 clauses designed for these functions. They

are: INSERT INM1tDLE T ..EI"E; TDATE: and SET.

INSERT INTO is used to add a new raw or set of rows into a table.

Fields without values are defined as null values. If all the fields are

present in the correct order for the raw, the list of column names may be

omitted.

The DELETE instruction specifies the table name comtaining the

row(s) to be removed from the database. The specific rows to be deleted

are qualified by a WHERE clause. The WHERE clause. in a DELETE

instruction is identical to the WHERE clause of a query statement and may

be contained in nested query blocks.

An UPDITE clause is used to name the table that contains the row(s)

to be modified. The SET clause specifies the updates to be performed on

the column(s) within a raw. Here, too, the WHERE clause identifies the

specific zw(s) to be mudified. An UPDATE statement may not be used to

modify primary keys. The new values being updated can be stated as

constants or expressions.

2.4 Security and Concurrency Control Statements . This section includes

discussion of SC(L Data Oontrol Statements for Security and Concurrency

Control. The following statements provide the framework for Security

Controls DEFINE USER; GRANT; REYOE7 and PASSWORD. The concurrency

2-7

4M...............................*-.,~~ 5-2-"

T

ontrol statments are: BEGIN TRANSACTION and END TRASrICN.

EINE USER is the statemnt that allows an authorized user access

to a secure database. Only authorized users can log on to a secure

database. The user who builds the database is, until otherwise

specified, the only authorized user. The rEFINE USER instruction allows

new users to log on to the database, to add tables and to allow new users

access to the database. It does not, however, allow access to stored

data in the database without data access privileges which are given via

the GPANT command.

The user %ho builds the table or view, controls access to it. The

user may allow others to access the table or view through the GRANT

command. Within this conand the following privileges may be allowed:

READ; INSERT; DELETE; UPDATE (by column); and EXPAND. Only the MAD

privilege may be granted for a view. Use of the WITH GRANT OPTION will

allow additional users to grant privileges to other users.

The REVOKE statement withdraws privileges that have been allowed

through the GRANT command. The privileges named are remoed from "the

grantee and fran all users to whom he has granted then." All of the

privileges that may be granted may be revoked.

A user's password is redefined through use of the PASSWORD

statement. The user can redefine only his own password.

Logical transactions consisting of one or more SOL statements use

the BEGIN TRANSACTION statement to identify the start point. This

statement specifies the tables (if any) being locked up for UPDATE

purposes or for MAD purposes.

2-8

I

The END TRANSACTION statement terminates the transaction that

started with a BGIN TPANACrICN statement.

2-9

SQL

our Syntax

sql-statement :: = query
I dml-statement
I ddl-statement
I control-statement

dml-statement == - insertion
I deletion
I update

query :: - query-block (ORDER BY ord-spec-list
insertion == - INSERT INTO receiver : insert-spec
receiver :: - table-name [(field-name-list)
field-name-list =: - field-name

I field-name-list , field name
insert-spec := - query-block

I lit-tuple
deletion -DELETE table-name [where-clause]
update := - UPDATE table-name [where-clause 3

SET set-clause-list [where-clause
where-clause :: = WHERE boolean
set-clause-list := - set-clause

I set-clause-list , set-clause
set-clause = = field-name = expr
query-block:: - select-clause

FROM from-list
[WHERE boolean]
[GROUP BY field-spec-list
[HAVING boolean I
[CONNECT BY [PRIOR] field-spec - field-spec]
[START WITH boolean]
[INCLUDING boolean]

select-clause := - SELECT [UNIQUE] set-expr-list
I SELECT [UNIQUE] *

sel-expr-list :: = sel-expr
I sel-expr-list , sel-expr

sel-expr == = expr
[var-name * *
I table-name . *

from-list :: - table-name [var-name 3
I from-list * table-name [var-name]

field-spec-list :: - field-spec
I field-spec-list , field-spec

ord-spec-list :: = field-spec [direction I
I expr
I ord-spec-list , field-spec [direction

direction :: = ASC
I DESC

2-10

boolean ::-boolean-term
Iboolean OR boolean-term

boolean-term ::-boolean-factor
Iboolean-term AND boolean factor

boolean-factor ::-INOT) boolean primary
boolean-primary ::-predicate

I[booleari
predicate ::- xpr comparison expr

Iexpr BETWEEN expr AND expr
Iexpr comparison table-spec
I< field-spec-list> -table spec
I< field-spec-list > [IS IIN table-spec

table-spec ::-query-block
1literal

expr ::-arith-term
Iexpr add-op arith-term

arith-term ::-arith-factor
Iarith-term mult-op arith-factor

arith-factor ::- [add-op Iprimary
primary ::-field-spec

Iset-fn (expr)
ICOUNT (*)
INVL (field-spec ,constant)
Iconstant
I(expr)

field-spec ::-field-name
Itable-name . field-name
Ivar-name *field-name

comparison ::=comp-op
I[IS IIN

comp-op :

I>
I>=
1<
I<=

add-op ::-+

mult-op :

set-fn ::-AVG
IMAX
IMIN
Isum
ICOUNT

2-U1

!

literal :3 - < lit-tuple-list >
I lit-tuple
I constant

lit-tuple-list :3 - lit-tuple
I lit-tuple-list , lit-tuple

lit-tuple :: - < entry-list >
entry-list :: = entry

I entry-list , entry
entry :: - [constant I
constant :: = quoted-string

I number
I NULL

table-name :: - name
image-name :: - name
name :: - identifier
field-name :- identifier
var-name :: - identifier
integer == - number
ddl-statement =: - create-table

expand-table
define-view

I drop
create-table :: - CREATE TABLE table-name (field-defn-list)

field-defn-list =: - field-defn
I field-defn-list , field-defn

field-defn :: - field-name (type [, type-mod])

type == - CHAR (integer) [VAR]
I NUMBER

type-mod :: - NONULL
I IMAGE (image-mod]

Image-mod :: - UNIQUE
I UC

expand-table :: a EXPAND TABLE table-name ADD COLUMN field-defn

define-view -DEFINE VIEW table-name
[(field-name-list)] AS query

drop : - system-entity name

system-entity : - TABLEIVIEW :

control-statement :: " define-user
password-spec

I revoke
I begin-trans
1 end-trans

define-user =: - DEFINE USER user-defn
user-defn :: - user-name/password
password-spec :: - PASSWORD password

2-12

Il "

grant ::-GRANT I auth 3table-name TO user-l ist
CWITH GRANT OPTION

auth :: - ALL RIGHTS ON
I operation-list ON
I ALL BUT operation-list ON

user-list .: - user-name
I user-list , user-name
I PUBLIC

operation-list :: = operation
I operation-list , operation

operation :: -READ
I INSERT
I DELETE
UPDATE [(field-name-list)]

I EXPAND
revoke :: = REVOKE [auth I table-name FROM user-list
begin trans = = BEGIN TRANSACTION I tran-number

ON TABLE table-name trans-type
tran-number == = (integer)
trans-type :: = UPDATE

I READ
end trans :: = END TRANSACTION [tran-number

This Secticn was extracted frcm the ORACLE USER'S GUI ,
pp. 2-51 - 2-54.

2-13

SWrIN 3. SIWE SQL/DS FETUMS

SOL/Data System is being developed by IBM for use on the 370 series

or 4300 caiputers under DOS/VSE. SCL/DS had a Beta test in August, 1981,

but is not projected to be ready for commercial installation until

February, 1982. SO./DS offers significant flexibility in data definition

and modification; high-level capabilities; and fairly simple user access

facilities. This system is designed to provide ease in programming and

use for both the user and the programmer.

User access to data is also easier in SOLDS. IBM calls it

"automatic navigation" which means that the user can access data by

indicating what data he needs, rather than specifying how to find it.

SQL/DS does not require that the user know bow the data is stored. The

user view of the database is two dimensional. The extract function that

is built-in to SQL/DS allows it to cop data from a /I database into

its tabular form.

This system has the capability to allow an application program to

"accept and execute a user entered omand at execution time, thereby

providing for the possibility of program control of user queries." The

host language preprocessor stores object code access codes modules, which

are executed at run time by application programs, in the data dictionary.

This feature eliminates the need for program reccnMilation when access

paths are changed.

A further, significant feature of SQL/DS is its direct bridge

capability. The DL/1 DOS/VSE extract facility, queues and executes

requests at specified times for data from a DL/1 database using

3-1

VSE/W. The facility has a I,/1 database description capability in

SCL/ID, a ML/1 extract omvonent, and an SL/DS load component in which

the SOL/DS target relations have been defined.

Additional features of interest on this system include: control of

free space with a parameter in the ACQUIRE DBSPACE command: that

archiving may be done during regular operation, automatic roll-back; and

a defined hierarchy of security authorizations.

The SL/nS system hen it is commonly available, will have several

significant features. It is, however, important to note that it shares

.st of its capabilities with INGRES and ORACLE. As E. Martin Dieckann

noted in his article "Three Relational DBMS," "The three systems are

striking in their similarities. They differ =ore in the degree to which

they have implemented certain facilities and capabilities than in the

array of facilities offered."

3-2

S rIGN 4. IL OESCRIPTICN

IDL (Intelligent Database Language) is a general-purpose query

language that translates easily into IE4-internal form developed by

Britton-Lee, Inc. The intelligent terminal raises the query; it

translates the user ommand to the IEM-internal form without the IEM ever

seeing the original user-generated imunand. Several front-end systems

are capable of taking a user-generated database commnd and translating

it to the IM-internal form. Hardware, software and data requirements

should be used to select the comand language suitable for translation

application. IDL is used in this comparative analysis because it

describes IEM commands easily.

The following symbols are used in IlL commands. They are extracted

from the IDM 500 Software Reference Manual Version 1.3, September, 1981.

• (', ") - Parentheses are necessary, and must appear literally in

the command.

"[', "' - Anything included in square braces is optional.

"I - A vertical bar indicates that a choice of words is

presented.

S", "" - Curly braces indicate that the wrd may appear 0 or

nre times.

/*', "*" - Words between these symbols are explanatory comments.

"", "•" - bWords in angle braces are meta-symbols.

All other words are key words and mst appear literally.

4.1 Query Statements. In order to display data from relations present

in the database, a range statement must first be provided. The range

4-1

statement associates a variable name to a relation name. Mbst IEM

acmands require the range variable, not the actual relation nme. Next

the command retrieve and the names of the attributes to be found are

listed. This is called the "target list." This list is qualified by an

instruction (called a qualification or a where clause) that specifies

which tuples to get the data from. Expressions that appear on the target

list nust be named so that the front-end program can display the name

when the value is sent by the IEM. Expressions can appear in the target

list and in the qualification.

Qualifications also determine which objects are affected by a

cutmand. They are boolean expressions of relational clauses. In fact, a

relational clause may only appear in a qualification, where operands may

be in any expression.

Aggregate functions are strong elements of IDL. They are designed

to return a set of values. A scalar aggregate is an arithmetic

expression that operates over one or more functions and returns a single

value. In the IEM, the following are aggregate operators: MIN, MAX,

COUNT, SUM, ADG, and ANY. "ANY" returns 0 if no tuples qualify;

otherwise "ANY" returns 1. COUWT, SUM and AVG (average) may use the

modifier unique. If that option is selected, only non-duplicated values

of the expression will be included in the aggregate. The result of the

aggregate nust also be given a name, so that the answer (result) can be

identified. Qumlifications are written inside the parentheses next to

the object of the aggregate. In this way, the qualification refers to

the objects being operated upon, not to the entire query. This

4-2

~ !

I

distinction allows considerable flexibility. An aggregate is always a

self-contained query etedded inside another query.

In IEL, the group by operator is called the "by" clause. It is this

clause that distinguishes the syntax between aggregate functions and

simple aggregates. When the qualification appears outside the aggregate

function parentheses it is not being used to evaluate the function. It

is, instead, used to specify which answers to print out. The

qualification is serving as a general where clause. When the by clause

is glo al to the whole query, the names on the target list are the same

as the names in the by clause. They are referring to the same tuple in

the qualification list.

The "order by" clause is included, by the user, to specify the

order of the data. Use of this clause is the only ay to assure that the

data will be returned in a specific order. Absence of an order by clause

allows the IM to return tuples in the order the IEM finds ucet efficient

for processing.

4.2 Data Definition Statements. The command "create" is used to set up

a relation in IL. Basically, the command sets up an empty relation in

the database currently open. Attribute types and maximum attribute size

must be specified in the create statement. 7b create a new database, the

o,- nd is "create database." This command sets up a database that is

empty except for the system relations. If parameters are to be included

they must be specified here, otherwise the IEM assumes no parameters are

to be included, and will use its default values. "Demand" specifies the

desired size of the database. The database will not be allowed to grow

4-3

beyond the size spcified.

"etrieve into" is the ammunard that creates a new relation frm one

or more old ones. This command causes the nw relation to be filled with

the data specified including any data onversion that has been specified.

W-en the "retrieve into" ommnand is finished executing, a copy of the new

data is in the new relation and the old relation sould be removed with

the destroy omwend. This process redefines the data structures to meet

the changing needs of the database.

There is a data dictionary built into the IM's data management

system. It was designed to enable users to interactively define the data

schema, and to look up that schena once it has been defined. Three of

the relations that perform the data dictionary functions are described

further.

The "relation" relation holds a list of all the relations in the

database identified by the IM-assigned relation id (relid), relation

names, relation owners, number of tuples, and other information needed by

the IEM to process cmmands on the relation.

The "attribute" relation contains information on each attribute of

each relation in the database such as: attribute name, type, relid,

ID-assigned attribute id (attid) and all other attribute information

needed by the IDE.

The "descriptions" relation associates one or more descriptions with

a relid/attid pair. If the attid is zero the description is associated

only with the relid. Descriptions may be up to 255 characters long.

4-4

The relation and attribute relation are automatically updated %hen a

new relation is added to a database. The user has the option to update

the description relation to store information about the relation. When a

relation is destroyed, the related tuples in the relation, attribute and

description relations are automatically deleted.

Adding a column to a table in IlL requires that a new table be

created. The procedure requires that a new table oonsisting of the old

table plus the new column be formatted. The old table is then destroyed

and the new table takes the name of the old table.

"Create view" is a command used to set up a virtual relation, one

that is an unreal entity. The view is composed of parts of one or more

relations (called close relations), or other views. View may be

preserved or destroyed just as relations are. They may also be updated

if the update can unambiguously be applied to one of the base relations.

The "define" statement defines the following stored crminads:

retrieve, append, replace, delete, begin transaction and end transaction.

In this command, a parameter can be used in any place a constant could be

used. The "define program" statement is used in programs and is

referenced with a 4-byte number used to refer to the stored ommand.

Each "define program" is associated with a program name and held

physically near other define program commands using the same program

The "destroy" ocmmrnd eliminates relations, files, views and stored

omCUands. This CmOMand ruMvKes the entire object from the systen. Its

space is then freed for use within the current database. If there are

4-5

views or stored cmzunds dependent on a database due to be destroyed,

they must be destroyed first. Only the awner or database administrator

my destroy an object.

4.3 Data Manipulation Statements. Data may be inserted into relations

through the "append" command. These cmmands cause the IM to store the

data in the specified relations. Basically, the command adds zero or

more tuples to a relation or a view. The names and values of attributes

must be specified at this juncture. An attribute with no assigned value

is given a default value: blanks for character attributes and zero for

numeric attributes.

The camrkand "delete" is used to remove one or more tuples from a

relation. Only a user with write permission may make deletions fron a

relation.

The cmuand "replace" substitutes one or more attributes in zero or

more tuples of a relation. The variable is located outside the target

list since only one relation may be affected by a single replace command.

"Replace" may access more than one relation to calculate what is to be

updated and how it is to change.

4.4 Security and Concurrency Control Statements. This section contains

the security and concurrency control statements used in IEL. The

statements, permit and deny, provide the frame~rk for security control.

Begin transaction and end transaction are the fundamental concurrency

control statements.

The command "permit" is a protection control cammnd. It allows

designated users access to a relation, view, file or stored ommand.

4-6

p

User names are recorded in the "users" relation by the Database

Administrator. If no names are recorded, everyone may access the

infmation. Rmad, write or "all" capabilities may be specified in the

Aprotect node> of relations, views or files. Execute must be specified

ftr stored cmunds. Relations, views, files and stored ommads default

to no access allowed by anyone except the owner. The tBA may grant

permission to use the create, create index and create database conands.

"Deny" is the camnand used to refuse access to users. Access may be

denied to a relation, file, view or stored cmnand by user names or group

names. If no users are specified, the protection applies to everyone.

Read and write apply to relations, views and files. "All" denies both

read and write capability. A deny cammand has precedence over previous

permit commands. Only the owner of an object or the DBA can deny access.

The EA may also deny rights to use the create, create index and create

database cmnads,

The "begin transaction" command is used whenever multiple IEM

commands are to be treated as a single transaction. The "end

transaction" ccnmmrd is given %henever a set of cunands that omnenced

with "begin transaction" is completed. This allows the user to make the

results of the transaction known to the rest of the system.

4-7

I

S TICt 5. IDM CMAND REEATICNSHIP 70 IL

The IEM 500 Database Machine does not have a machine language. It

is programmed through a series of high level commnds and interpretations

of the results. Each cmmand begins with a owmand token, an op-ode.

The last byte of the comand is always the END OF CO4AND token Which

tells the IDM that the cmnd is complete and that processing can begin.

Parameters of cummands are defined with other tokens. In this section of

the report, Britton-Lee's nomenclature and architecture are followed

explicitly. Document tokens are written in capital letters. Numbers to

the right of the token are one-byte length specifiers. These numbers are

sent after the token and are followied by as many bytes of data as are

associated with the token. The examples that follow show both the IL

form and the resulting IDM command notation. Examples are used at

several junctures to clarify formats. The symbols defined in the

introduction to Section 3 are used in the command definitions.

5.1 Query/Parse Tree

The meta-symbol notation for a query tree is:

<query tree> :LT-list>- -><rootnode>L= utq-list>

where the camionents are defined as:

<rootnode>: ROT<bytel> <byte2)

where

<byte 1>-range no. for result variable

<byte 2>-status bits for unique/non-unique,

retrieve/retrieve into,

create/destroy irndex, permit/deny

5-1

This is the syntax for the IM's internal-form omm languaqe.

The language consists of all valid trees which correspond to IDM

commands. After the command tree is constructed it is sent in postfix

crder to the IEM.

The process of translating the query is straightforward.

I. A user at a terminal types in a query.

2. The translating program puts the user commstand into

IEM-internal form.

3. This parsing procedure evolves into a parse tree. The

left side of the parse tree is the target list. The right side of the

tree is the qualification. An example of a parse tree in IEM format

follows. Its IDL equivalent (using the standard employee file example)

is shown at the bottom of the page.

3MMT

FIGME 5.1 IEN PARSE TRE /\
v 5 /

/VAR 5
(oni) / \

/ ,/ rin I fl-r2

/ \R / 7 100 / 0IOO
TLND VAR 7 (0 mnibsr) /

(0 salary) /
VAR 7
(0 salary)

Met

aft: IM, 4- / \ \\

FIGUFE 5.2 IDL PARSE TMEE attn 2 Owno)

salary-.--
/ 100 de

(nwntr*) (salary)

5-2 1000

I
I

5.2 Query Statements

Query statements generally include target lists, qualification,

range variables and expressions. Note, that for all of the following

examples, trees are sent using a post order traversal, and that itens in

parentheses below the nodes are data associated with those nodes, and are

sent after the token value and length.

The target list is the list of objects that are affected by the

ciunand. In a retrieve command the order of the elements on the target

list will determine the order in which data is retrieved. In a query

tree, the target list which is on the left of the ROOT node end with the

TLMD (target list end) node.

<target list element>:

(name).=(expression> <attribute>

Target lists can be simple, as in the case above, where the target

list was composed of a single relation variable and an attribute name.

Arbitrary expressions, as defined below, can also be included in the

target list. For example:

retrieve (e.name, wages = e.salary * e.hours)

(0 0)

RESICMM
FIGnM 5.3 I]O TAGE~r LUSr EXZI QEE

/O VAR5
RDC (3 name)

MENDL
/ \

KIL
//

VAR7 VAR6
(3 salary) (3 hours)

5-3

!

In the above query, the target list is cxmqpsed of the attribute "e.name"

and the expression "e.salary * e.hours". The expression rut be given a

nae in order to be displayed to the user; the name assigned in the above

query is "wages".

The qualification is the part of the database command that specifies

which objects are affected by the cumnand.

(qualification>: (<qualification>)

not <qualification>

<qualification> and <qualification>

<qualification> or <qualification>

<clause>

A qualification is a boolean expression of relational clauses.

Relational clauses may only appear in a qualification. Operands may be

in any expression. Pbr the example:

delete eup where emp.salary >24000

the following tree would be used. / (00)
/

i //

7FIE 5.4 QUER TI
WrH QJALIFICATION VAR 7 iNr 2

(0 salary) 24000

Expressions are supported by the IE4 in both the target list and

qualification for most commands. The following terms which are explained

in great detail in the IEM manual are all operable expressions.

<expression>: (aggregate>

5-4

<attribute>

<onzstant>

<expression> <arithp> <expression>

-<expression>

(<expression>)

<onstant function>

<unary function> (<expression>)

(with length function> (<intl>, <expression>)

<tmary function> (<expression>, <expression>)

<ternary finction> (<intl>, <intl>, <expression>)

Arithmetic operators are supported by the I4 only for integer and BCD

expressions.

The range command associates a variable name with the name of a

relation or view. Most IDM commands require the range variable, not the

actual relation name. The IEM requires the statements on every omm-and

in which a variable is used. The IML syntax for range is:

range of <variable> is <object name>

The retrieve comnand causes data to be sent to the host. This

oimiand can reference up to 15 relations, although they must all be in

the same database. Use of an "order by" clause will specify the sort

order of the returned data. The IML syntax for retrieve is:

retrieve [unique] Cinto]<object name>]

(<target list>)

Corder[by <order-spec> C :ald)

(,corder-spec>(:aIdJ)

5-5

Ii

('*ierecqualification~]

Giveni the example:

range of p is parts

retrieve (p.name,p.oost)

order by cost :descercling

%here p, -cost'avg (p-cost)

(0 0)

FIGRE 5.5 Irt4 RM?,RMV CXt44N TME

/ \ VAR 5

FESD(24 VAR 5 (0 Ox~st)
(0 nuuM) AH

TIM VAR ATSM

VAR S
WrIEVE (0 cost)

.AN- 6 0 parts

FIG3RE 5.6 1E14 RE7MREV CM TIME

/ \ VAR 5
VAR 5 (0 COSt A

Con-) KWAVG
TLN VAR51SLN

(0~ ca)VAR 5
(0 0080

RMM 6 0 parts

F=10 1 sip parts

5-6

t

The IDM coanr otation is extracted from the 1DM Software Reference

Manual Version 1.3, section 7.

RWZ~ <lenf> <rno> relnaml

IRIW3 lenf> <rno> relnamek

<rootnode>: R 0 <byte2>

/* cbyte2>= 1 if retrieve un~ique

and <byte2>= 0 if retrieve ~

'T-list>: 71M~ = =

1"<resattzoe>

IORCERDM1 < = =<attzode>II

'0-list>: (Q-sub)tree> I QUM~

CORDER x] I !:ORWED y) /* where x and y are attribute *

**nubers on the target list

**of the query tree on %hich *

*the result is sorted

<options>

5.*3 Data Definition Statements

This section includes IML notation anid the 1M commiands for the

operations create, create database, retrieve into, create view, define,

5-7

I;

and destroy.

The "create" ommand sets up an aqpty relation in the open database.

Several ctional specifications, such as size, updates and Mace may be

selected. These options are detailed in the IIM Softwre Reference

Manual Version 1.3. The IEL syntax is:

create<object name> (kname>=<format>[

. <name>=, < format>]) [with<options]

The ICM create am nd appears as follows:

CRATE

RANGE <lenf> <rno> <name>

<rootnode>: ROOT <rno> 0

<-list>: TLEND I1= => <resattnxode> <= = <typenode> II

<0-list>: [<= = logspecl [<= =<qspec>]

<= =[<deamndspec>] ILEND

,cdemandspec>: I <allocspec> <= =<dskspec>

I <dskspec>

<typenode-: TYPE INTl I TYPE INT2 I TYPE INT 4

TYPE FLT4 I TYPE FLT81

TYPE CiAR len I TYPE FCiAR len I

TYPE BCD len J TYPE FBCD len I

TYPE BCIOLT len I TYPE FBCEFLT len

TYPE BINARY len I TYPE FBInARY len

logapec: LD = => WITH 4

<qqec>: IrNl val I 1wr2 val I IwT4 val = -> wIT 1

fallopec>: mITI val I IR'2 val I Inr4 val

5-8

- WIMH "2 I 5"

<dskspec>: CHAR <lenf> <diskname> -) Wr 3

/* where len is an attribute width in *

** bytes and <diskname> is a virtual *

** or physical disk name */

<options>

"Create database" sets up an enpty database on a framework of system

relations. The database options that may be specified include: the

number of blocks to allocate; the disk the database should be allocated

to; and the disk on which to write the transactions log. Note that if

there is no space on the specified disk the database will not be created.

The syntax is:

create database <name>[with<options>]

The Ifl command structure for "create database" is:

EBCLTE

RAkME<lenf> <rno> <dbname>

<rootnode>; ROCY <rno> 0

<T-list>: TIfLD =>

<(-list>: [<= = logspec) <= = [<demandspec>] I QLED

logspec: = -) WI1 4

<qspec>: wrl i I I12 val I INT4 val = > 1

<dmandspec': <allocspec>

I <allocspec> <= =dskspec>

I <dskspec>

5-9

!

<allocspec>: iNr1 val I iNT2 val I INT4 val-->

wrni 215

<(dkspec>: CHAR <lenf> <diskname> = -> WITH 3

<cptions>

When the user requires a new relation, and wants to put the results of the

query currently being retrieved into the new relation "retrieve into" is used.

The IML syntax and IEM commnd structure take the following formats:

retrieve into expparts (p.name, p.cost)

order by cost:descending

where p.cost>avg (p.cost)

RAE <lenf> <rmo> relnamel

MW <lenf> <ro> relnamek

<rootnode: ROOT <rro> <byte2>

/* <byte2>= 1 if retrieve unique into; **

** <byte2>= 0 if retrieve into */

<T-list>: TWND = -> II <resattnode> I ORIZRttM"

<= = <att e I I

40-list': <Q-subtree> I QrAMD

[O]hE A x) I COFEMD y) /* where x and y are attribute **

m** numbers on the target list **

5-10I

** of the query tree on frich **

** the result is sorted

<ptions>

"Create view" is a command used to set up a virtual relation, one

that is rot a physical entity. A view is made of parts of one or more

relations (base relations) or other views. A view may be protected or

destroyed, and may be updated if the update can unambiguously be applied

to one of the base relations. The IDL syntax for "create view" is:

create view <cbject name> (<target list>)

[where<qualification>1]

An example of a "short "create view" query tree is reproduced here from

the 12 manual.

range of p is parts

range of pr is products

create view mine (p.name, p.cost, pr.quan)

where pr.name = "TV"

and pr.part - p.-ae

/, 2,) \ %NM 6 0 parts \

HWZ 9 1 products / / \\
VAR S ED E

M 52mine / (Gm /s \
leM2 (0 ost) (1 nii) (2"?) (1 Fart) (0 nut)

FIG=3 5.7 CRATE VIESW EIM TM

5-u1

1
The IEM cammd format for "create vievP is:

vI q

IV" <lenfl> <rnol>

E lenfk> <rnk>

RANGE <lenf> <viername>

<rootrode>: ROOT <rno> 0

(T-list> TLAD II = => RMSArR <= < <attnode> II

<0-list>: <Q-subtree> I OLND

<options>

ENDOUMMAND

The define statement is used to define one of the following stored

ccmnands,- retrieve, append, replace, delete, begin transaction or end

transaction. The comnand my employ parameters anywhere that a constant

would normally be acceptable. The IML syntax is:

(define <name> <cmanand>kcondM> lend define.

The IDM command mode requires that in constructing a "define tree:

replace proper <varnode> which will become a parameter by corresponding

<paramud> in each comimand tree which appears in a stored =cmand".

The amynand "destroy" is used to eliminate relations, files, views,

and stored commands. The entire object is removed from the system,

freeing the space for another object. Only the owner or the LUA can

destroy objects. Objects with dependent views or stored connards must

5-12

have those destroyed before the ctject may be destroyed. The destroy

ccmiand my be implemented two ways: first, by specifying the object

name and; second, by specifying relation names through the use of a

target disk.

The IML syntax is:

destroyccbject name> (,cbject name>)

destroy (<target list>)[where<qualification>)

The IEM cuand format is:

DESTROY

<rootnode>: F4= 0 0

(T-list>: TEND II = => RESEW <= = <attnode> II

<-list> COsubtree>

<options>

5.4 Data Manipulation Statements

The commands append, delete, 'and replace are data manipulation

statements. These statements are designed to add, delete or mxiify column

or raw values within relations or views

The append ommand adds tuples to a relation or a view. Attributes

are named and their values specified at this juncture. An attribute

without a specified value is assigned a default value. The IML syntax

for the append cznmand is:

append [to] ccbject name> (<target list>)

[uherecqualification>]

The IDN ommand format follows:

5-13

FA= <lenf> <rno) relnaml

RWZ <lenf> <rno> relnamek

<rootnode>: RON r no 0

<T-list>: MEND - => <resattnode> <= < attnode>

<0-list): (Q-subtree> CUMl~

Theamkv "dlee"is used to rehloe or xe tuples; fran a

IM syntax is:

The 1t14delete <variable> !whrequalificatian>I

RMM <lenf> <rrv> relnamel

FAN 'lenf> <rno> relnamek
<raotzxode>: F4D <rno), 0 /* Qthere <rrv)-range no. *

"for the result variable *
CT-li~): WEND

(0-list): 40-stzw.' QUMai

5-14

<options>

"Replace" is a wm~and that replaces one or more attributes in zero

or more tuples of a relation. A single replace c wnand affects anm

relation. The variable is outside the target list. "Replace" may access

one or more relations to calculate uhat is to be updated or changed. The

IL syntax is:

replace <variable> ((target list>)

[here <cqalification>]

The IM comrand set structure for replace is:

PA=<lenf> <rno> relnamel

IAE <lenf> <ro> relnamek

<rootncde> ROT <rno> cbyte2>

(T-list>: TLEND ==> I< <resattnode> <= = <attnode> I

<0-list>: <Q-subtree> I QLEND

<options>

5.5 Security and Concurrency Control Statements

This section focuses on security and onn crrency control statmuents.

In IML the statements "permit" and "deny" are the framework for database

security. Begin Transaction and Bad Transaction are the fumdmental

5-15

concurrency control statements.

The comand "permit" allows specific user(s) or grops access to a

relation, database, or index. Permission to read, write or "all", may be

granted. Secure "users" names are recorded in the "users" relation by

the MA. Without user specifications, anyone may access the information.

Permission to create, create index, and create database my also be

granted. The IM syntax is:

permit <protect mode> [[on I of] <object name>

[(<attlist>)] [to<user> {, user> }

The IEM command syntax is: PERMIT

RANGE <lenf> <rno> <name>

<rootrjde>: ROOT <mo> mode

/* on read modeOl */

/* on write moe=02 */

/* on all mode03 */

/* on execute mnde-034 */

(T-list>: TIfElD = => "81SDOM <= = <varnode>"

<Q-list>: II HR <lenf' <username> = > QUAIX1 I I

Ion.D

<username>: /* a user to Whom the object is denied */

<options>

"Deny" is a czmmand used to bar access to users. Access my be

denied to a relation, view, file or stored command. If there are no

3 5-16

I
-. . S

users specified, the protection applies to everyone. Access may be

denied to read, write or all. Deny commands Which contradict earlier

permit commands take precedence. The EA may also deny rights to use the

create, create index, and create database camnands. The IL syntax is:

deny<protect mode> r Lan I of) <object name>

[(<attlist>)3J[to <user>f,<user>)]

The IL command format is:

RANGE <lenf> <rno> <name>

<rootnode> : ROOT <rno> <nude>

/* on read mode=1 *1

/* on write ncde-02 */

/* on all modea3 */

/* on execute mode034 */

<T-list>: T[RND II = => RESDM < = <varnode> II

<(-list>: II CHAR <lenf> <username> = => (OAUXX4 }I

<username>: I* a name to Whom the object is denied *I

<options>

The command "begin transaction" is given Whenever multiple IEM

cocwands are to be treated as a single transaction. The IML syntax is:

begin transaction.

The IUM cmiand structure is:

BBOINLX5-

5-17

(options>

The comand "end transaction" is used Whenever a set of cmmands

that commenced with a "begin transaction" is complete, and the user

wishes to make the results of the transaction)mown to the rest of the

system. The IML syntax is

end transaction.

The IM command structure is:

ENDMCT

<options>

ENO WCCMMAD

5-18

SECTIOR 6. CORREATIMN MWE SCL AND IE14 FEATUES

In the earlier sections of this analysis the features of ORACLE SQ

(hereafter referred to as SCJL) and IEM/IL were described in detail. In

this section, examples of the constructs of each language will be placed

side by side, so that the reader can get an understanding for bow SML

might be translated to IL. Those features of SCL that are not available

with the IEM are discussed later in this section. Please note that all

of the examples use the classic database example of personnel/employee

files. Information such as employee: name, number, salary, department,

location and title is manipulated to show the capabilities of both

systems. The SOL formats are capitalized, and the IL formats are

presented in the lor case.

6.1 Query Facilities

ORACLE SM IM

1. Find the names of the employees in department 50. (Query command)

SELECT NAME range of e is emp
FRKM EMP retrieve (e.name) where e.deptno=50
WHERE DEn f50

2. Find the names of the employees in departments
25, 47 and 53. (tere clause)

SELC NAME range of e is emp
FRO4M EP retrieve (e.name) where e.deptno-25
WHERE DEPf) IN (25,47,53) OR e.deptno-47 or e.deptno=53.

3. List the names of all employees uho earn between $1,200 and $1,400 (Range
of values)

SELECT NAME range of e is emp
FRt4 NIP retrieve (e.name) uhere e.sal >
WHERE SAL BEN!M 1200 and 1400 1200 and e.sal <1400

4. Find the names of employees who work for departments in New York (Nested
queries)

6-1

I

SELECT NAM range of e is emp
FROM EMP range of d is dept
WEPriO IN retrieve (e.name) Where e.deptno-

SEL.CT IzPrt d .deptno
F I lEFr and d. loc - "New York"
WNWE WC - "NEW NOWR"

5. List the names of employees Who have the same jcb and salary as *SMrI"
(Range variables on the same table)

SELECT NAME range of e is emp
FROM f4P range of f is emp
WIERE JOB, SAL>= retrieve (e.name) where f .name=
SELECT JOBS "SMITH"
FROM EIP and f.jcb-e.jcb and f.sal=esal
WHERE N1VE='SMIT"

6. List all of the departments and the average salary within each of thein

(GROUP BY (SCL/BY(IIL)clause)

SELECT lEFT NO, AVG (SAL) range of e is emp
FROM E4P retrieve (e.deptno, asal-avg
GRXOP BY DEPTWO (e.sal by e.deptno))

7. List the departments in Which the average employee salary is less than
10,000 (HAVING clause (S(L)/hERE clause (IlL))

SELBCT DEPIh range of e is emp
FROM D4P retrieve (e.deptno) Where avg
GROUP BY IEFI'[) (e.sal by e.deptno) < 10000
HAVING AVG (SAL) < 10000

8. List the departments that employ more than ten clerks (COUNT function)

SEL'P IDE]f range of e is emp
FROM E4P retrieve (e.deptno) where count
WERE JOB = "CLERK" (e.jcb by e.deptr Where e.jcb =
GROUP BY IEPftM "CIEI ") > 10
HAVING CCNFf (*) > 10

9. Determine the number of different jdbs held by employees in department
50 (UNIQUE aggregates)

WcMLIr (Lt IGE JOB) range of e is up
FRO4 D4P retrieve (temp - count unique
MERE EEf - 50 (e.jd Where e.deptzu-50))

10. Mwin a CREATE TABLE statement is used in S(L with the IMA option

6-2

defined on a column, it indicates that an index is to be maintained for

the values in that column. In IlL, a clustered or nonclustered index can

be created for an attribute or a grou of attributes in a relation. The

IEM can sort the relation by its "parts" on the part number, and then

create a directory that relates the part number to the physical location

of the associated part tuple. That command is stated:

create clustered index on parts (number)

6.2 Data Manipulation Facilities

SOIL IDL

I. Insert a new employee information into the employee table. (INSERT LIM
(SOL), append (IL) clause)

INSERT INTO EP(ENM, AME, JOB, SAL, append to emp(emenpo-7989,
C04,DEPTNO): <7989, "CARPER', name = "CARPER",
"SAIESMAN, 1500,0,30> jcb-"SALES4AN", SAL1500,

crmmm=0, deptno=30)

2. Delete the employee tuple with employee number 561 from the EP table
(DELETE clause)

DELETE EMP range of e is emp
M[MRE EMRN) = 561 delete e where e.emno=561

6.3 Data Definition Facilities

1. Create a new table to contain departmit, name and location information
(CREATE TABLE statement)

SCIL IMl

CREATE TABLE lEPT creat dept (deptno=k2, nume-C12,
(IDEPM (CAR(2), NMUL),MWM loc = c20)
(cHAR(12)VAR),LUC(CHAR(20)VAR))

Note that names are limited to 12 characters in IL, and 30 characters
in ORACLE.

2. Define a view called PROGS consisting of the names and salaries of all
programmers and the locations of their departments (IIM statement)

DINE VIEW PGS range of . is imp

6-3

(NAME, SALARY, HM IASE)AS range of d is dept
IMP. MME, EMP. SAL, IEPP .lfC create view progs (nemme.name,

FKM EMP, DiTr salary - e.sal, hmmtease-d.loc)
WHERE EMP. EFtP .DEPT tD where e.deptno-d.deptno and
AND EMP JOB='PR"GRA e. jdb"rograuuer"

3. Add a new column called NEMPS, of integer type, to the table iEMT
(EXPAND TABLE statement)

EXPAND TABLE EIEPT range of d is dept
AMD COIM NEMPS(INTEGER) retrieve into ndept (deptno=

d.deptno, d .name-d.dname,
loc=d loc,nens-0)
destroy dept
rename ndept, dept

Note that in IEL to add a colun it is necessary to: create a new expanded
table destroy the old table, and use the name of the old table for the
new table.

4. Destroy the view D50 (DROP (SOL), destroy (IL), cmwmand)

DROP VI D50 destroy d50

6.4 Security and Ccurrency Control Facilities

1. Authorize user GEORGE to READ the VEPT table (GRANT(SoL)perm-t(ID)
statement)

SCL IL

GRANT READ permit read of dept to george
ON tEPT
TO GEORGE

2. Rvoke from user GEORGE the right to WRITE in the lEFT table. (REOKE
(SQL), deny(IDL)statement)

REVOKE WRITE deny write on dept to georgeCN DEL,
FFCM GEORGE

3. Calculate the average salaries of each jc± position within the EMP table
(BMX3N and END transaction)

BE= TPANCICW range of e is mp
(14 TABLE IP READ begin transaction

retrieve (e.jb, a-vg(e.sal by

6-4

!

SELIET JOB, AW(SAL) e.jcb))
FKRM IMP end transaction
GROUP BY JOB
EN~D TPAN6ACTICK

Certain features implemented in OPACLE/sm are not implemented on

the IDM. A brief list of these capabilities follow. For expanded

descriptions see Section 2 of this analysis or the ORACLE USER'S GUIDE -

Version 2.3.

1. In ORACE/SQL names may be 30 characters long. On the IEM, the

maximu name length is 12 characters.

2. ORACLE/SOL has the capability for retrieval operations on

tree-structured tables. This capability is not implemented in the IUM.

3. ORACLE atfccnatially maintains an index (IMAME) for the first

column defined in a table. The IEM requires the user to explicitly

indicate on %hich columns to define an index.

4. In ORACLE/SOL columns can be added to the right side of

existing tables by means of the WCPAND TABLE statement. With the IM,

the user must build a new expanded table, destroy the old table, and

rename the new table with the name of the old table.

5. The ORACLE/SQL GRANT comand enables users to grant the

following privileges to other users- READ, INSERP, IEEIE, UPDATE and

WAN). The 1M4 permits RWAD, WRITE, INSEPT and UPDATE.

6. In OPACLE/SOJ the Null Value Function is used. The IM has no

equivalent.

6-5

SKTICH 7. AIDITIONAL IDM FATUMS

The IM has both software and special-purpose bardware features that

are significant for their range, speed and depth. These features such

as the transaction management functions, the random access file system,

and the complete relational database management system are all described

in detail in the Britton-Lee Product Description. Some of the unique

features of the IEM are highlighted below.

Within the IDM data management system is the capacity to use a

stored command. A stored omuand is one defined earlier by the user, and

stored in a partially processed form in the IEM. Fran this point on, the

cmmnd can be referred to by the user with a short name or number. Both

the transmission and execution times are minimized because the comnd is

stored in the IDM.

Using the stored query feature is of critical importance for

front-end programs. This function allows the internal form of the query

to be stored in the IDM. The front-end program sends the query name and

appropriate parameters. This reduces the anount of information that

needs to be transuitted to run a query. It also reduces the size of the

front-emd program, leading to more efficient programs.

The IDM bas a 1-31 decimal digit BCD (binary coded decimal) and 1, 2

and 4-byte integers. When a relation is created, the =mximum length of

the BD and dcaracter attributes are specified. The IDM automatically

compresses data to save storage space.

Tuples are accessed by values not by position. Therefore the

structure of a relation can change. Attributes can be added, and the

7-1

!

relation can be reorganized with very little inwect on end-user rograms.

The values are specified in the qualification.

The IEM has two special constant functions in addition to the

standard aggregate functions. The "time" function suplies the time of

day in a 4-byte integer. The "date" function provides the date in a

4-byte integer.

The IDM has the capability to handle cumplex aggregate functions

using built in functions within MMEE clauses, a capability that is not

available in SOL. The following exanple, extracted from The Preliminary

Performnce Report is a good illustration.

"For each account get the name of the account and the
average balance for this account type for those
account types uhose average balance is greater than
twice the minimin of all account types.

range of a is accounts

retrieve (a.name, avg - ave (a.balance by a.type))

vkwre avg (a.balance by a.type)) (min(a.balance by
a.type)*"

The IDM also has the capability to handle an aggregate within an

aggregate. The following is an example:

retrieve (a-avg(max(e.sal by e.deptnoM)))

Using a qualification within an aggregate is also a special

capability of the IEM.

retrieve (awavg(nax(e.sal by e.deptno %here e.yrs>5)))

7-2

I

SFI(14 8. UNIMFJJHD FMh1 RES CF FULL SEOIEL

Certain features of JEL as defined in the article, "S1EL 2: A

Unified Approach to Data Definition, Manipulation, and ontrol" that

appeared in the IBM Journal of Research and Developmnt, (Vol. 20

November, 1976) were not implemented in ORACLE. These features are noted

briefly in the following section and illustrated with examples.

1. In S EL query-expr nonterminal defines set operations. ORACLE

does not support set operations.

S XZ ORACLE

query: :-query-expr query: : query-blockrORDER BY ord-spec-list!
EOREER BY ord-spec-list]

query-expr: :=query-block
lquery-expr set-up query block
I (query-expr)

2. The EM syntax includes an INT O clause, which is used for

the host language interface. This capability is not included in the

ORACLE syntax. The ORACLE syntax permits a HAVING clause without a GROUP

BY clause which is forbidden by the SEWEL syntax.

query-block: :=select-clause query-block: :- select-clause
(INTO target-list] FRtM framlist

[WHEM boolean)
FROM frcm-list rGROUP BY field-spec-list]
(WIE boolean] (HAVtM boolean]
[GRWO BY field-spec-list] [CONNcr BY(PRIORI
(HAVING boolean]] field-spec-field-spec)

[STARr WIT boolean]
tIMJuIM boolean]

3. SE00EL permits an (ID or NW qualifier, to be used with both

assertions and triggers. This concept is not supported by ORR E. The

OmCLZ NVL provides a default value to be used in place of null values.

S does not provide an NYL function.

s-1

primary: t-COLDINE] field--pec primary: :-field-spec
l (t-fh(INIQUElexpr) Iset-fn(expr)
|count(*) I (unt(*)
Icostant INVL(field-spec, constant)

I (expr) I ostant
I (expr)

4. SEOLEL syntax permits named objects to be differentiated by

their creator. OalCE syntax does not support this capability.

name: :-[creator.]identifier name ::=identifier

5. The SEQUEL syntax permits the implementation of special purpose

user defined set functions %hich are added to a special program library.

ORAME does not support this.

set-fn: :-A I XIMINI SLMICONT I identifier set-h: :-AG|IAXIMINIS141MUNrT

6. The SEQUEL syntax provides host-location and CURSOR references

for the host language interface. ORACLE does not support these or the

UER/DATE functions.

SEQUEL ORACLE

constant: := quoted-string onstant: := qxted string
I number Inumber
Ilost-location INU1L
INUL
IUSER
MATE
I field-nme OF CURSOR
cursor-nwme ON table name

7. SEQUEL uses parentheses to grasp boolean operations While

CM uses brackets.

b olewn-prima-y: s= predicate boolean-pr Miary: : predicate
I (boolean) I boolean)

KYTE-brackets are terminal symbols
here

8-2

8. SEQUEL supports set operations with IS NOT IN clauses, set

f!n& ms, and uamiarisons between two tables. It also supports an IF a

T1U b constructicn. Neither of these capabilities are present within

predicate: :expr omrison expr predicate: :iexpr aonarison expr
I expr BLE!M expr AND expr I expr BE1WM expr AND
texpr coparison table-spec expr
I < field-spec-list>=table-spec !expr comparison table-
I < field-spec-list [IS I [NOT] spec
IN table spec 1 <field-spec-list>=

I IF predicate WEN predicate table-spec
ISr(field-spec-list)acoarison I <field-spec-list>
table spec IS)IN table spec

I SEr (field-spec-list) cumparison
SET (field-spec-list)

Itable-spec cmparison table-

9. SMEL suports the set operations O(TINS, DOES NOT CCMMAIN,

and as previously noted, IS NOT IN. ORACLE does not support these

operatin.
swim ORACLE

vczarison: := -oM p comparison: :=cmp-op
CMQTAINS 1[IS]IN
IDOES N r C0AIN
I EISJIN
lISINr IN

10. SJEL uses angle brackets to delimit tuples, nd parentheses

to delimit lists of tuples or scalar constants. ORACLE uses angle

brackets for both of these purposes.

literal::-(lit-tuple-list) literal: :-<lit-tuple-list>
I lit-tuple I lit-tuple
I (entry-list) I costant
lonstant

8-3

I

